

Grid in Transition Study: Phase 2 Analysis of ramp up and ramp down periods

Nicole Bouchez, Ph.D.

Principal Economist, Market Design

Vijay Kaki

Market Design Specialist, EMD, Market Design

ICAP/MIWG

October 7, 2022

Slide 15: corrected final bullet

Agenda

- Background, 2022 study deliverable & plan
- Phase 2 Assumptions
- Phase 2 Update: Separating ramp up and ramp down multi-hour ramp needs
- Next Steps

Today's Goals:

- Provide and receive feedback on the results of the Phase 2 analysis separating ramp ups and ramp down
- Provide and receive feedback on the schedule for next steps

Background, 2022 study deliverable & plan

Grid in Transition

Background:

- A rapid transition is underway in New York State from a power grid where energy is largely produced by central-station fossil fuel generation, towards a grid with increased intermittent renewable resources and distributed generation.
- A grid characterized by high levels of intermittent renewable resources and distributed generation will require new thinking. We approach potential market enhancement efforts with two guiding principles:
 - (1) all aspects of grid reliability must be maintained; and
 - (2) competitive markets should continue to maximize economic efficiency and minimize the cost of maintaining reliability while supporting the achievement of New York's climate policy codified in the CLCPA.
- The study will inform the NYISO's planning, forecasting, and operations, as well as the development of wholesale market mechanisms to enhance grid resilience.

Grid in Transition

- Deliverable: Q4 Study Complete
- Project Description:
 - Using the work completed to date across various NYISO studies and initiatives, including the Reliability and Market Considerations for a Grid in Transition work and Climate Change Study work, the 2022 effort will identify and, if possible, quantify through a new study, the potential level of system flexibility and/or grid attributes needed to reliably maintain system balance.

Plan

- The study will look at the evolution of the variability that dispatchable generators will face over time to inform upcoming market design decisions: are changes to existing market products needed and/or are new products needed for the reliable operation of the grid?
- The study will
 - Look at evolution of load and net load shapes (load net of wind and solar) over time,
 - Look at the distribution of hourly ramps over time, and
 - Look at periods (multi day) with low wind and solar and what that implies for net energy and hourly ramps.
- Since load forecasts are constantly evolving and being reviewed and since different load forecasts have different implications, the study will leverage different forecasts and their underlying assumptions using data from previous studies.

Multi phase study

- First phase leverage the Climate Change Phase 1 "CLCPA Case" data to look at the questions
- Second phase coordinate with 2022 planning studies
 - Leverage the upcoming Outlook study Policy Case (Scenario 1) and the NYSERDA Integration Analysis (Scenario 2) load forecast case
- See March 3 ICAP/MIWG presentation for additional details

Multi phase study

- First phase leverage the Climate Change Phase 1 "CLCPA Case" data to look at the questions
- Second phase coordinate with 2022 planning studies
 - Leverage the upcoming Outlook study Policy Case (Scenario 1) and the NYSERDA Integration Analysis (Scenario 2) load forecast case
- See March 3 ICAP/WIWG presentation for additional details

Phase 2 Assumptions

Climate Change Phase 2: Leveraging the Outlook study

- This phase of the study is based on the 2021-2040 System and Resource Outlook study data.
- Just like in Phase 1, we are focused on the hourly variability from the Net Load defined as:
 - Load

minus BTM output
minus Front of the meter solar output
minus Off Shore Wind Output
minus Land Based Wind Output*

We look at both Policy Case 1 and Policy Case 2 and use all the information (load, renewable output, curtailments, etc.) from those Outlook study cases. Please see the 2021-2040 System and Resource Outlook study presentations and report** for more information on the assumptions.

^{*} The renewable output is net of curtailments.

^{** 2021-2040} System and Resource Outlook (The Outlook)

Phase 2 Update: Separating ramp up and ramp down multi-hour ramp needs

Separating Ramp Up and Ramp Down

Multi Hour Ramps

- Although looking at hourly ramps is very informative, the total ramp up is particularly useful to look at when considering the future needs of the grid
- In the last presentation we provided metrics that included both ramp up and ramp down periods.
- The next slides separate the ramp up and ramp down for the multi hour ramps

		No. of	Ramp up or			50%ile Number	75%ile	Max	Min number of ramp
Scenario		Instances		•				of hours	•
Policy Case S1	2030	1051	Ramp Up	3.8	2	4	5	17	1
Policy Case S1	2040	1162	Ramp Up	3.7	1	3	5	16	1
Policy Case S2	2030	1074	Ramp Up	3.6	1	4	5	9	1
Policy Case S2	2040	1265	Ramp Up	3.0	1	3	4	11	1
Policy Case S1	2030	1053	Ramp Down	4.5	1	4	8	16	1
Policy Case S1	2040	1161	Ramp Down	3.9	1	3	6	14	1
Policy Case S2	2030	1074	Ramp Down	4.6	1	4	7	18	1
Policy Case S2	2040	1265	Ramp Down	3.9	1	3	6	16	1

 No observable trend in the number of hours ramped over time

				Average						50 0/:l- /			
				number						50 %ile /			
		No. of	Ramp up or	of Ramp	Average	Shoulder %			25 %ile	Median	75 %ile		
Scenario	Year	Instances	down?	hours	ramp MWs	(6 months)	Winter %	Summer %	Ramp MWs	Ramp MWs	Ramp MWs	Max Ramp	Min Ramp
Policy Case S1	2030	1051	Ramp Up	3.8	4155	52%	24%	24%	989	3183	6910	13768	7
Policy Case S1	2040	1162	Ramp Up	3.7	5298	55%	23%	23%	1085	3412	8582	25863	1
Policy Case S2	2030	1074	Ramp Up	3.6	4496	50%	23%	27%	1243	3998	7075	14186	4
Policy Case S2	2040	1265	Ramp Up	3.0	6211	53%	23%	25%	1343	4079	9942	27920	1
Policy Case S1	2030	1053	Ramp Down	4.5	-4148	52%	24%	24%	-6878	-3276	-861	-1	-18162
Policy Case S1	2040	1161	Ramp Down	3.9	-5291	55%	23%	23%	-8986	-3047	-853	-3	-25906
Policy Case S2	2030	1074	Ramp Down	4.6	-4501	50%	23%	27%	-7299	-4152	-1179	-3	-17324
Policy Case S2	2040	1265	Ramp Down	3.9	-6220	53%	23%	25%	-9816	-4896	-1785	-3	-27032

- Ramp events are distributed fairly evenly over the year
- Ramp ups and ramp downs are increasing in magnitude over time

Looking at seasonality

- There were questions about the seasonality of ramp. The following slide looks at summer (June-August), winter (December-February) and shoulder (the other 6 months) across all the years.
- There does appear to be some seasonality but it is slightly different in the two policy cases:
 - The S1 Policy Case reflects less ramp needs (up and down) in the shoulder periods than in the summer and winter. Summer and winter are fairly similar.
 - The S2 Policy Case has more ramp needs (up and down) in the winter but the summer and shoulder periods are fairly similar.

					Average			50 %ile /			
					number	Average	25 %ile	Median	75 %ile		
			No. of	Ramp up or	of Ramp	ramp	Ramp	Ramp	Ramp		
	Scenario	Year	Instances	down?	hours	MWs	MWs	MWs	MWs	Max Ramp	Min Ramp
Summer	Policy Case S1	Overall	3922	Ramp Up	4.4	4692	1115	2917	8300	21725	1
Winter	Policy Case S1	Overall	3810	Ramp Up	4.0	5306	1598	4493	8261	25863	3
Shoulder	Policy Case S1	Overall	8975	Ramp Up	3.6	3843	869	2856	6143	22389	1
Summer	Policy Case S1	Overall	3922	Ramp Down	4.6	-4680	-9118	-1675	-540	-1	-25906
Winter	Policy Case S1	Overall	3810	Ramp Down	5.1	-5284	-7753	-5227	-1840	-2	-23895
Shoulder	Policy Case S1	Overall	8977	Ramp Down	4.2	-3856	-6202	-2839	-843	-1	-21066
Summer	Policy Case S2	Overall	4502	Ramp Up	3.5	4423	908	3090	6678	25668	1
Winter	Policy Case S2	Overall	3994	Ramp Up	3.6	5647	1581	5252	8356	27920	1
Shoulder	Policy Case S2	Overall	8906	Ramp Up	3.5	4752	1108	3850	7187	26333	1
Summer	Policy Case S2	Overall	4502	Ramp Down	4.3	-4411	-7240	-3557	-1017	-2	-19243
Winter	Policy Case S2	Overall	3996	Ramp Down	5.1	-5644	-8511	-5247	-1630	-3	-27032
Shoulder	Policy Case S2	Overall	8903	Ramp Down	4.4	-4760	-7381	-4269	-1253	-1	-21239

Next Steps

Planned Next Steps

- We are working on the white paper and expect the structure of the report to mirror the presentations to ICAP/MIWG.
 - We are planning on including appendices with background information.
- Expect to return late October/early November with the draft white paper.
- There will be a stakeholder comment period of approximately 3-4 weeks and then will finalize the white paper in early December.
- The NYISO will also be updating the regulation portion of the 2016 Solar Impact on Grid Operations – An Initial Assessment* in 2023. More information will be available in early 2023.

^{*} See section 7 of the 2016 Solar Impact on Grid Operations - An Initial Assessment

Our Mission & Vision

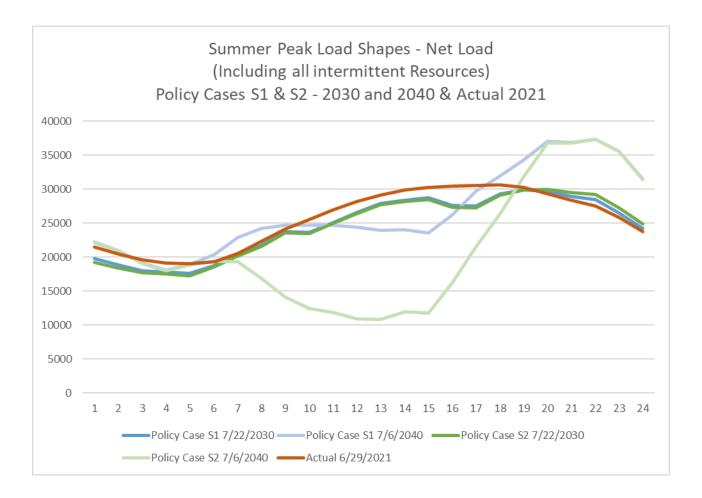
Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

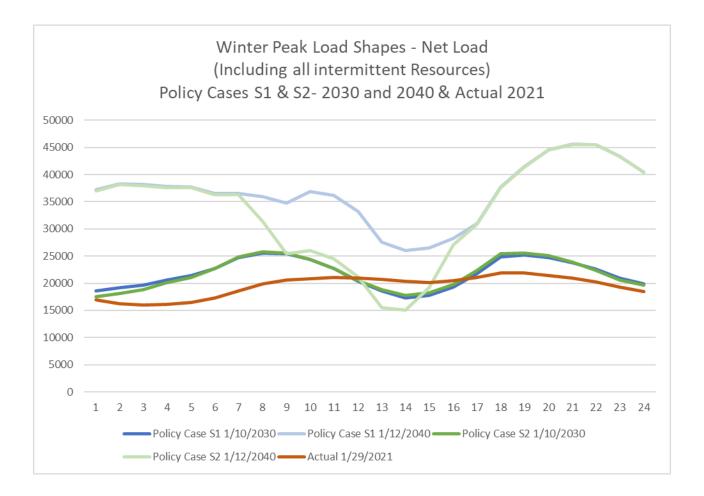
Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

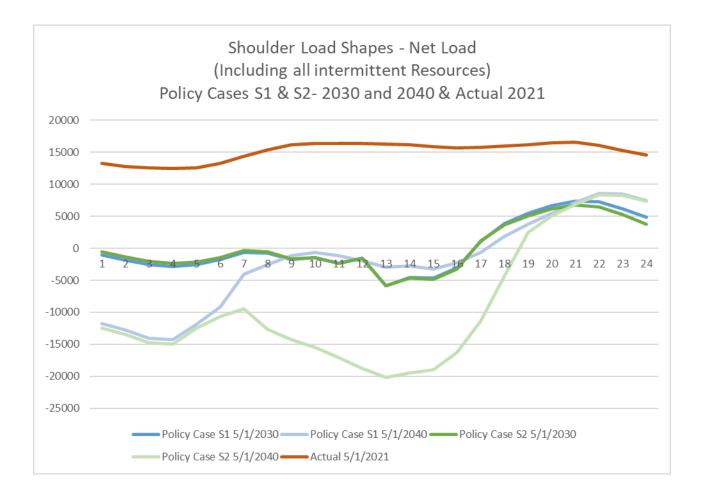
Questions?

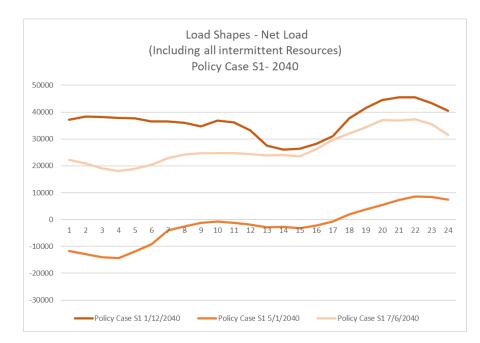

Appendix A- Slides presented at the Jun 29 ICAP/MIWG:

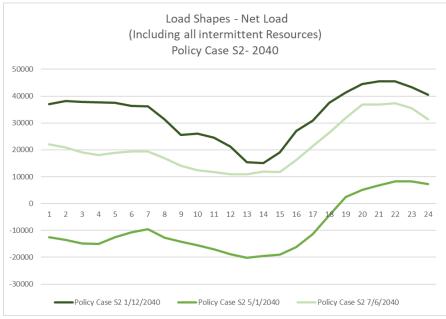
Phase 1 results with negative net load periods

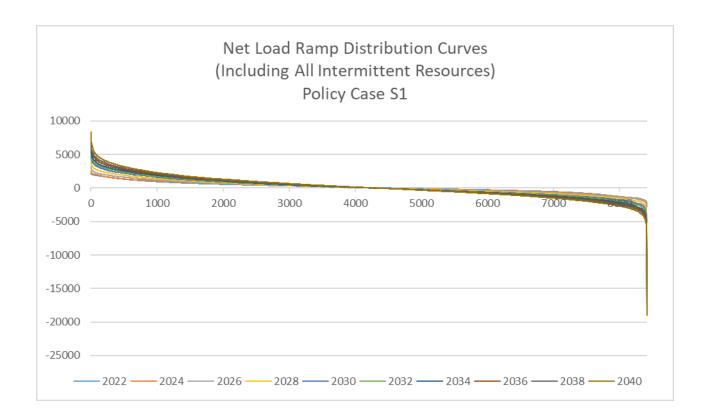


Load Shapes – 2030 and 2040 (and actual 2021)

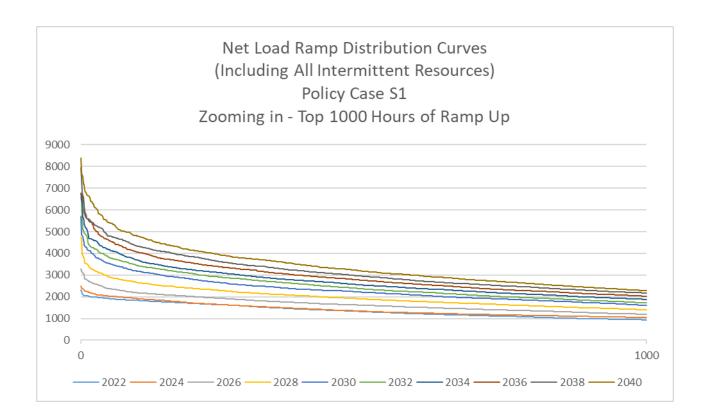




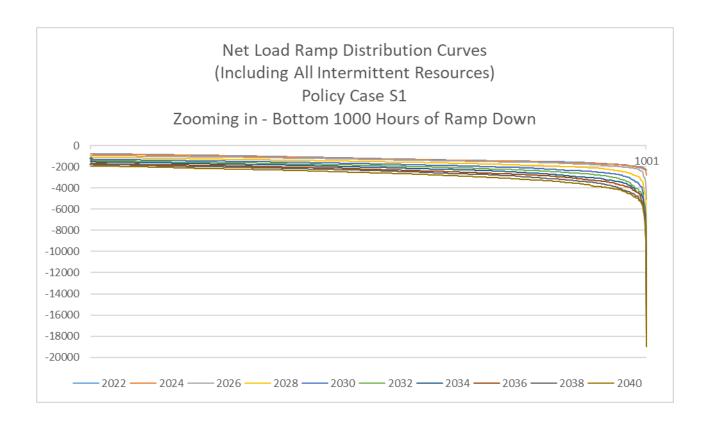


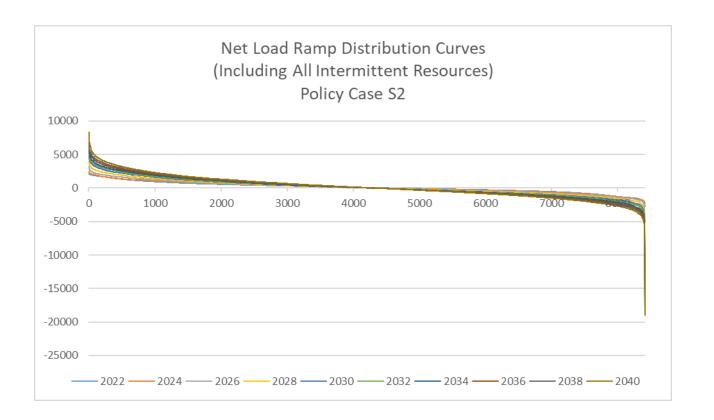

Ramp Distribution Curves

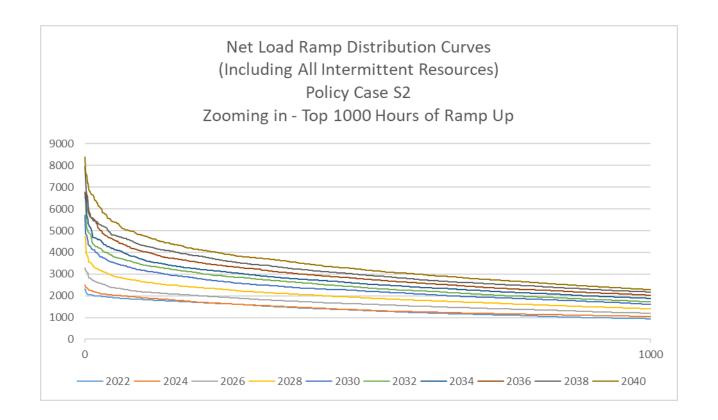
Looking at the hourly ramps over the entire year*



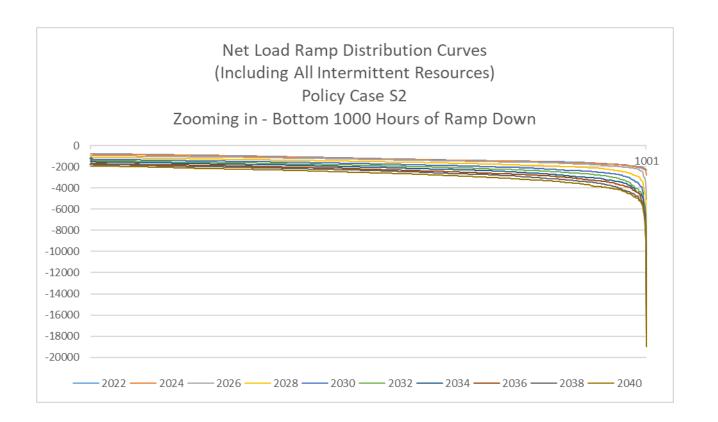
Policy Case S1

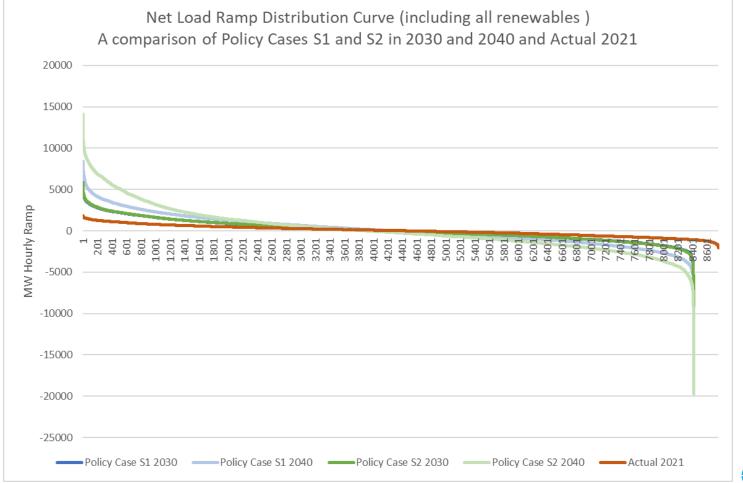






Policy Case S2

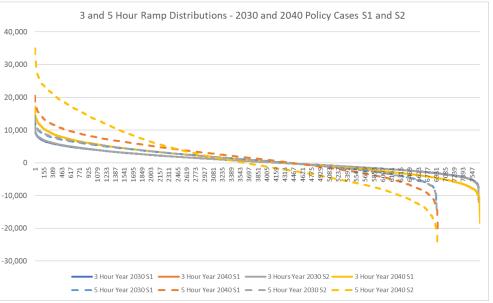




A comparison of Policy Cases S1 & S2

Multi Hour Ramps

Looking at the total multi hour ramps over the entire year*

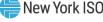


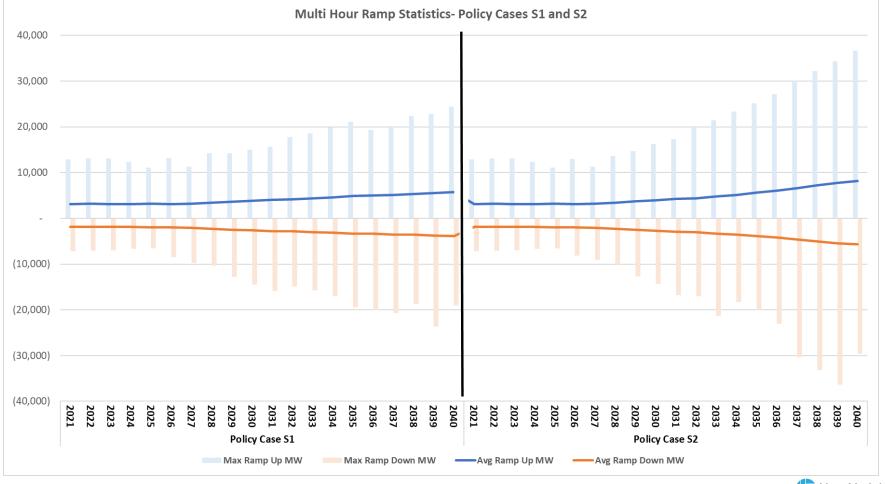
Multi Hour Ramps

- Although looking at hourly ramps is very informative, the total ramp up is particularly useful to look at when considering the future needs of the grid
- We are looking at several different metrics
 - The 3 and 5 hour ramping needs a rolling metric that looks at the in-day net ramp (including all intermittent resources) over 3 and 5 hours.
 - The ramp needs over the entire up or down in-day ramp period
 - For example, if over a 24 hour period the net load ramps down for 6, up for 8 hours, down for 2 then up again for 5 and down for 3 that would be three down ramp events for 6,2, and 3 hours and two up events for 8 and 5 hours.
 - This allows visibility of the full magnitude of ramp up events.

Three and Five Hour Ramps: 2030 and 2040

					Standard	Max Ramp	Max Ramp
Ramp	Case	Year	Mean	Median	Deviation	Up	Down
3 Hour	Policy Case S1	2030	552	350	2,915	10,741	-11,330
	Policy Case S2	2030	557	345	2,978	11,788	-11,962
5 Hour	Policy Case S1	2030	1,291	1,261	3,826	13,389	-13,648
	Policy Case S2	2030	1,300	1,274	3,933	14,252	-14,425
3 Hour	Policy Case S1	2040	860	661	4,349	17,036	-18,309
	Policy Case S2	2040	906	-180	6,795	30,315	-15,207
5 Hour	Policy Case S1	2040	1,989	1,970	5,668	20,448	-13,449
	Policy Case S2	2040	2,002	449	9,781	34,903	-20,434




Multi Hour Ramping Needs

- This metric looks at the entirety of the ramp up and ramp down events
- Looking at the years 2022-2040, the averages of the Policy Cases S1 and S2 are fairly close (average ramps of 328MW and 333MW respectively) however the higher amounts of solar resources in Policy Case S2 lead to larger ramp needs in the extremes of the distribution (both ramps up and ramps down). This is consistent with the load shapes and hourly ramp distributions seen earlier.

Summary Statistics- 2022 through 2040

	Year		Ramp up	ramp	Ramp	•	-	Max Ramp	Ramp	Max number of hours	•
	Overall										
Policy Case S1	(2022-2040)	46077	3.5	331	-2401	-257	2845	24388	-23631	19	1
	Overall										
Policy Case S2	(2022-2040)	45383	3.5	337	-2635	-287	2505	36692	-36308	17	1

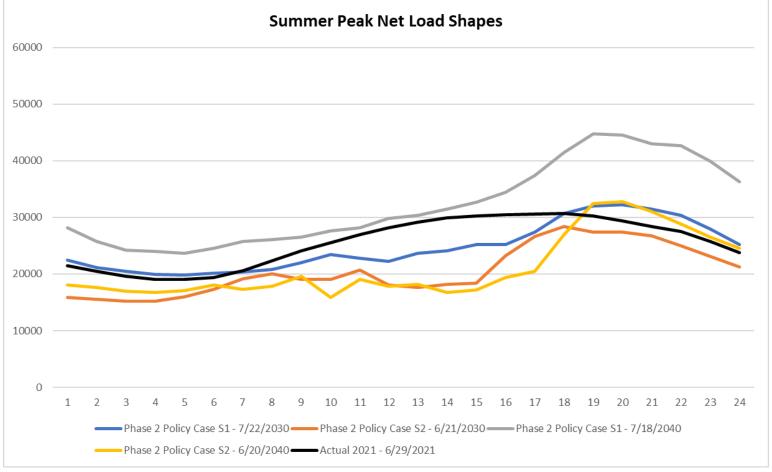
Ramp up needs

- Focusing on instances when the multi-hour ramp up is greater than 5,000MW and when it is greater than 10,000 MW
 - Ramp up needs are larger in 2040 than 2030
 - Ramp up needs greater under Policy Case S2 than S1 because of the larger amounts of assumed intermittent resources

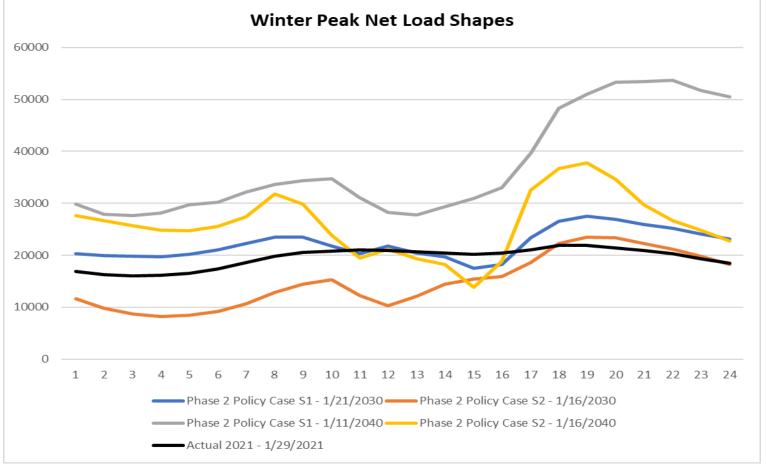
		No. of		Average number of Ramp	Average	Shoulder %			25 %ile	50 %ile / Median Ramp	75 %ile
Scenario	Year	Instances	Ramp MWs	up hours	ramp MWs	(6 months)	Winter %	Summer %	MWs	MWs	Ramp MWs
Policy Case S1	2030	398	>5000	5.9	7692	48%	28%	24%	6235	7460	8791
Policy Case S1	2040	558	>5000	5.6	10032	49%	26%	25%	6985	9380	12335
Policy Case S2	2030	407	>5000	6.0	7905	49%	28%	23%	6355	7771	9052
Policy Case S2	2040	466	>5000	6.0	17019	50%	28%	21%	10055	17542	22968
Policy Case S1	2030	46	>10000	6.8	11149	59%	37%	4%	10321	10979	11773
Policy Case S1	2040	245	>10000	6.5	13371	45%	32%	23%	11130	12694	15009
Policy Case S2	2030	58	>10000	7.0	11394	59%	29%	12%	10426	10865	11973
Policy Case S2	2040	351	>10000	6.5	20274	50%	25%	25%	15340	20166	24528

Appendix B- Slides presented at the August 24 ICAP/MIWG:

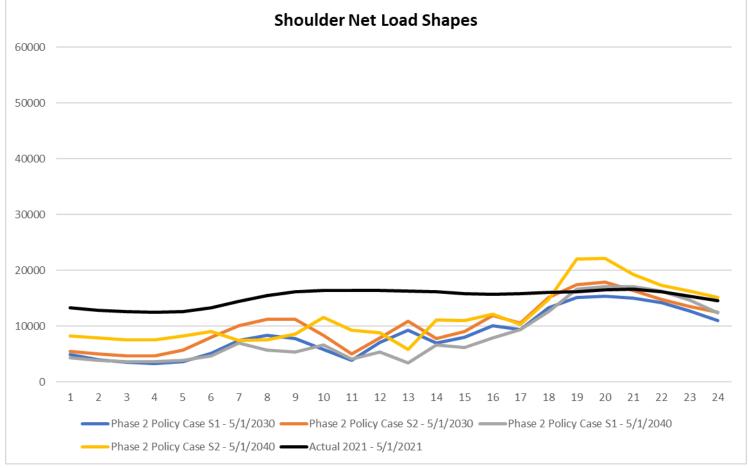
Phase 2 results and Phase 1 results without negative net load periods

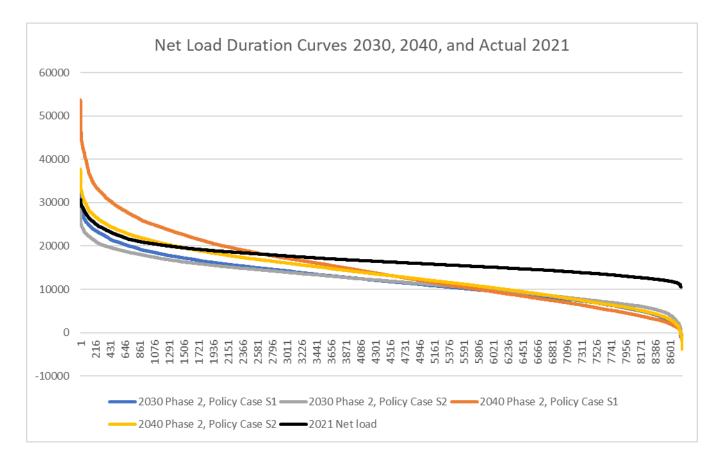


Phase 2 results



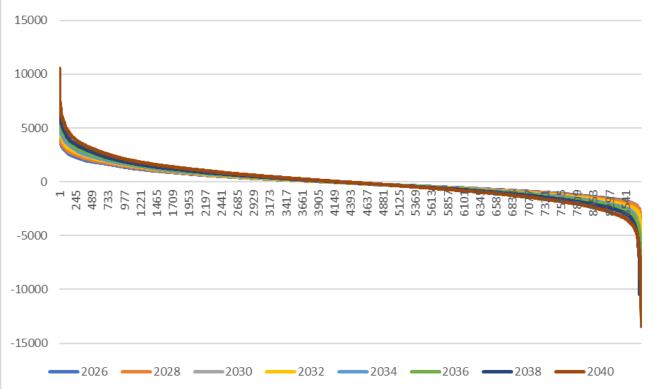
Phase 2 Load Shapes -2030 and 2040 (and actual 2021)





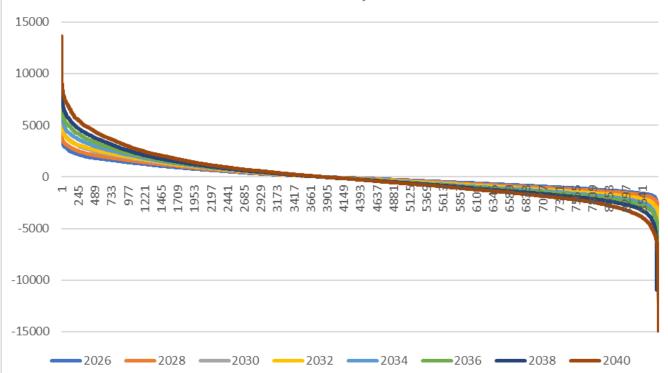
Phase 2 **Net Load Duration** Curves - 2030 and 2040 (and actual 2021)

Phase 2 Ramp Distribution Curves


Looking at the hourly ramps over the entire year

Outlook Policy Case S1

Net Load Single Hour Ramp Distribution Curves (Including All Intermittent Resources) Phase 2 Policy Case S1



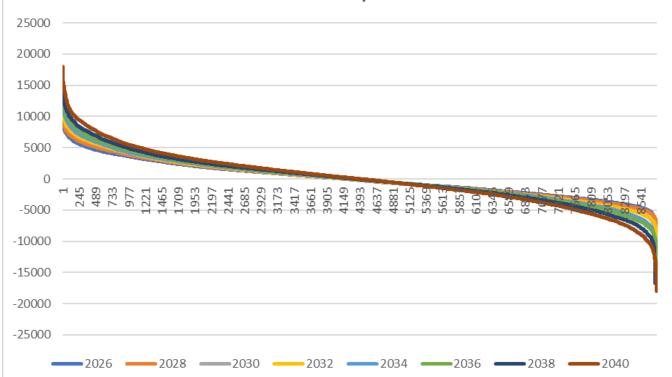
Outlook Policy Case S2

Net Load Single Hour Ramp Distribution Curves (Including All Intermittent Resources) Phase 2 Policy Case S2

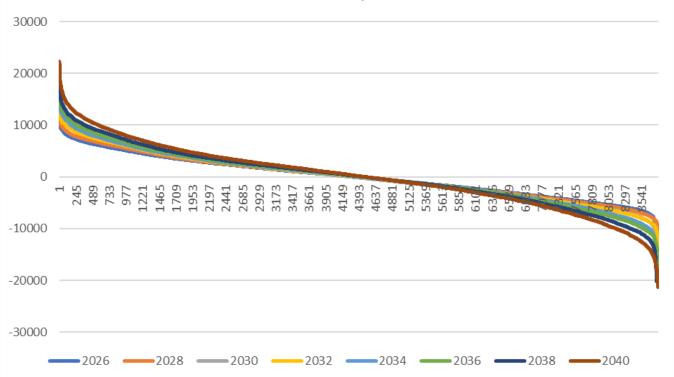
Phase 2 Multi Hour Ramps

Looking at the total multi hour ramps over the entire year*

Multi Hour Ramps

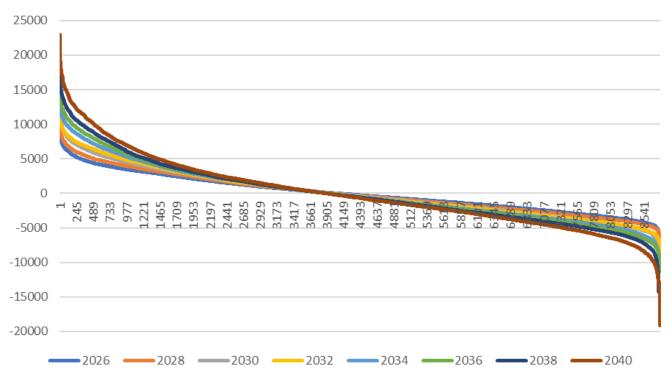

- Although looking at hourly ramps is very informative, the total ramp up is particularly useful to look at when considering the future needs of the grid
- We are looking at several different metrics
 - The 3 and 5 hour ramping needs a rolling metric that looks at the in-day net ramp (including all intermittent resources) over 3 and 5 hours.
 - The ramp needs over the entire up or down in-day ramp period
 - For example, if over a 24 hour period the net load ramps down for 6, up for 8 hours, down for 2 then up again for 5 and down for 3 that would be three down ramp events for 6, 2, and 3 hours and two up events for 8 and 5 hours.
 - This allows visibility of the full magnitude of ramp up events.

Outlook Policy Case S1

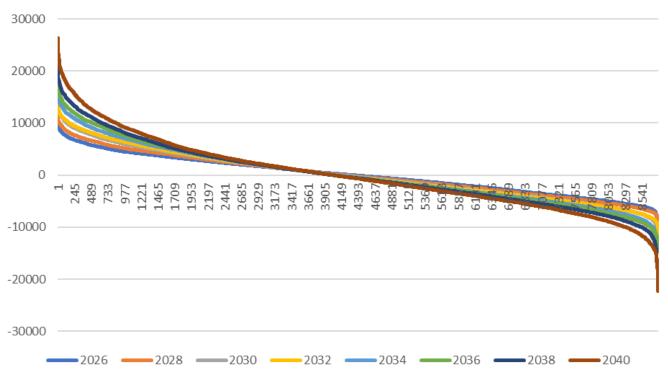


Net Load 3 Hour Ramp Distribution Curves (Including All Intermittent Resources) Phase 2 Policy Case S1

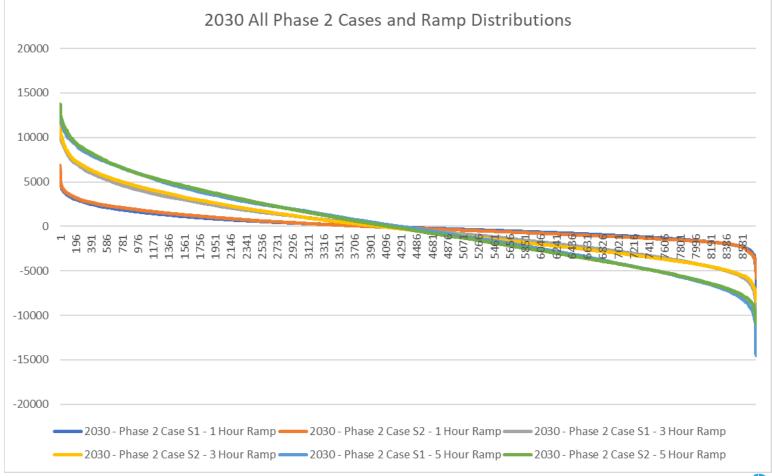
Net Load 5 Hour Ramp Distribution Curves (Including All Intermittent Resources) Phase 2 Policy Case S1



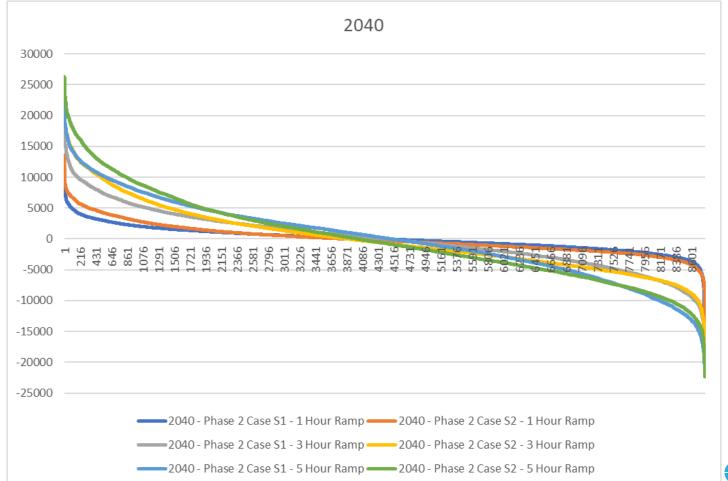
Outlook Policy Case S2



Net Load 3 Hour Ramp Distribution Curves (Including All Intermittent Resources) Phase 2 Policy Case S2


Net Load 5 Hour Ramp Distribution Curves (Including All Intermittent Resources) Phase 2 Policy Case S2

Looking at 2030

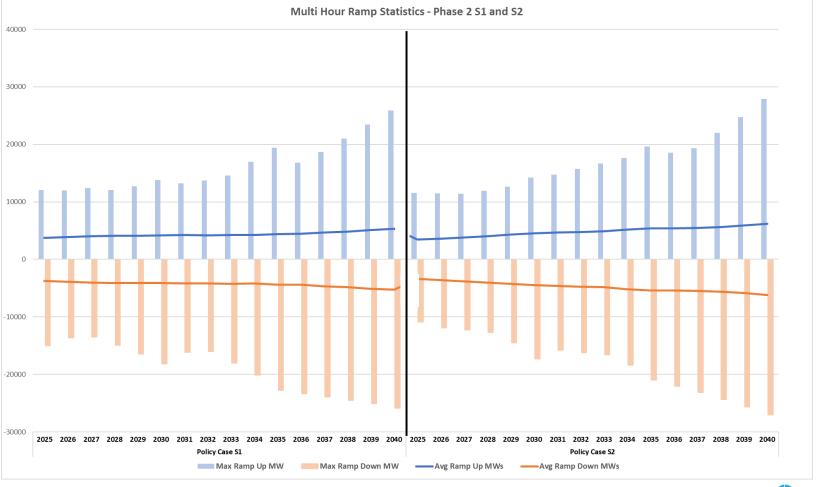


Looking at 2040

Multi Hour Ramping Needs

- This metric looks at the entirety of the ramp up and ramp down events
- The next slides show both the Phase 2 statistics and the Phase 1 statistics previously presented
- There are a number of differences, however, overall the two Phases of the study are quite similar
 - The S1 and S2 cases continue to show somewhat different ramps but the differences between them are somewhat smaller in the Phase 2 analysis.
 - The higher amounts of solar resources in Policy Case S2 along with the different loads lead to larger ramp needs in the extremes of the distribution (both ramps up and ramps down) especially in the later years. This is consistent with the load shapes and hourly ramp distributions seen earlier.
 - The most notable difference between Phase 1 and Phase 2 are that in Phase 2 the mean and median of the ramping needs are both near zero

Multi Hour Ramping Needs


Summary Statistics- Phase 2 of Study (2025-2040)

Scenario	Year		Ramp up	ramp	Ramp	•	75 %ile Ramp MWs	Max Ramp		number	•
Policy Case S1	Overall	33431	4.2	0.2	-3127	0	3270	25863	-25906	17	1
Policy Case S2	Overall	34807	4.0	-0.2	-4316	0	3924	27920	-27032	18	1

Summary Statistics- Phase 1 of Study (2022-2040)

		No. of	Ramp up	ramp	Ramp	50 %ile / Median Ramp MWs		Max Ramp Up	-		Min number of ramp hours
	Overall										
Policy Case S1	(2022-2040)	46077	3.5	331	-2401	-257	2845	24388	-23631	19	1
	Overall										
Policy Case S2	(2022-2040)	45383	3.5	337	-2635	-287	2505	36692	-36308	17	1

Ramp up needs

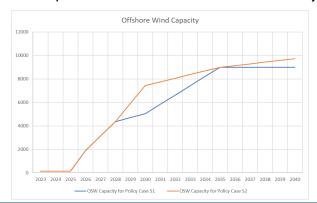
- Focusing on instances when the multi-hour ramp up is greater than 5,000MW and when it is greater than 10,000 MW
 - Ramp up needs are larger in 2040 than 2030
 - Ramp up needs greater under Policy Case S2 than S1 because of the larger amounts of assumed intermittent resources

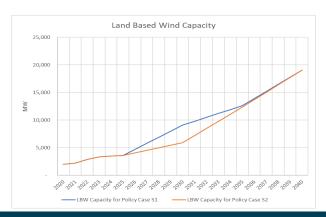
		No. of		Average number of Ramp	Average	Shoulder %			25 %ile	50 %ile / Median Ramp	75 %ile
Scenario	Year	Instances	Ramp MWs	up hours	ramp MWs	(6 months)	Winter %	Summer %	MWs	MWs	Ramp MWs
Policy Case S1	2030	364	>5000	6.1	8428	48%	29%	24%	6763	8392	9920
Policy Case S1	2040	461	>5000	6.0	10613	47%	29%	24%	7287	10161	13420
Policy Case S2	2030	441	>5000	5.2	8081	50%	28%	22%	6144	7773	9691
Policy Case S2	2040	550	>5000	4.5	11828	49%	29%	21%	7471	11219	15195
Policy Case S1	2030	86	>10000	7.2	11266	42%	30%	28%	10569	11077	11767
Policy Case S1	2040	239	>10000	6.9	13729	37%	33%	30%	11489	13306	15402
Policy Case S2	2030	94	>10000	5.8	11263	54%	31%	15%	10398	11051	11923
Policy Case S2	2040	314	>10000	5.1	15323	48%	28%	24%	12180	14391	17597

Revisiting Phase 1 Results without negative net load hours

Phase 1 Assumptions

Climate Change Phase 1 "CLCPA Case"

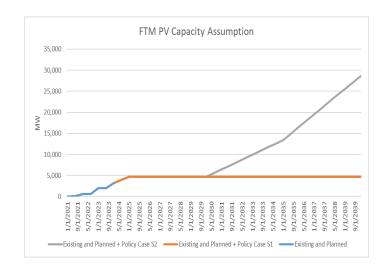

- As discussed in the prior presentations, this phase of the study will be based on the Climate Change Phase 1 CLCPA Case load forecast data. *
- Today's presentation is focused on the hourly variability from:
 - Climate Change Phase 1 load forecast (adjusted for the new 10 GW BTM PV in 2030)
 minus Front of the meter solar output
 minus Off Shore Wind Output
 minus Land Based Wind Output
- Note that this can result in negative Net Load which may lead to larger than expected ramps. This section of the presentation focuses on ramps when Net Load is nonnegative.
 - This replicates what would happen if renewables were curtailed or additional load were to come online
 - In other words, when the prior analysis would have had a negative net load, the load has been set to zero


New York ISO

^{*} Climate Change Phase 1 report;

Assumptions – Wind (LBW and OSW)

- Land Based Wind (LBW) & Off Shore Wind (OSW) Capacity
 - Existing LBW capacity based on the 2021 Gold Book
 - Capacity additions for both Land Based Wind and Offshore Wind were taken from
 - Facilities that have completed Class Year Facilities Study (2021 Gold Book)
 - Facilities that have completed CRIS Request (2021 Gold Book)
 - Future and Non-Class Year Facilities reported to NYSERDA ((https://data.ny.gov/Energy-Environment/Large-scale-Renewable-Projects-Reported-by-NYSERDA/dprp-55ye)
 - Beyond the years reported for entry of these facilities, subsequent additions were determined using linear trends based on System and Resource Outlook Policy Cases S1 and S2 (see the <u>April 26 ESPWG presentation</u>)
- LBW Shapes Based on the 2009 Land Based Wind Hourly NREL Data
- OSW Shapes -Based on the 2009 Offshore Wind Annual Hourly NREL Data

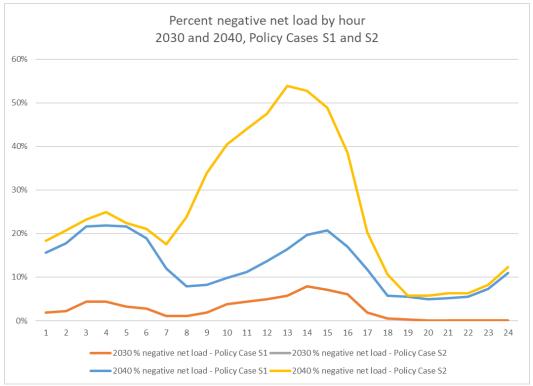


Assumptions- Solar (BTM and FTM)

- BTM PV increased the Climate Change Phase 1 CLCPA case assumption of 6GW to 10GW consistent with current policy
 - The existing shape and path of adoption assumed in the Climate Change Phase 1 CLCPA Case maintained until 2025 then scaled to reach 10 GW from 2026 until 2030*

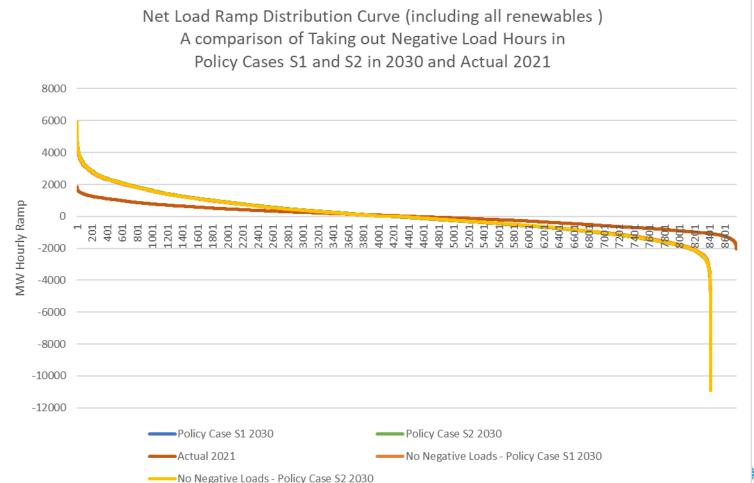
FTM PV

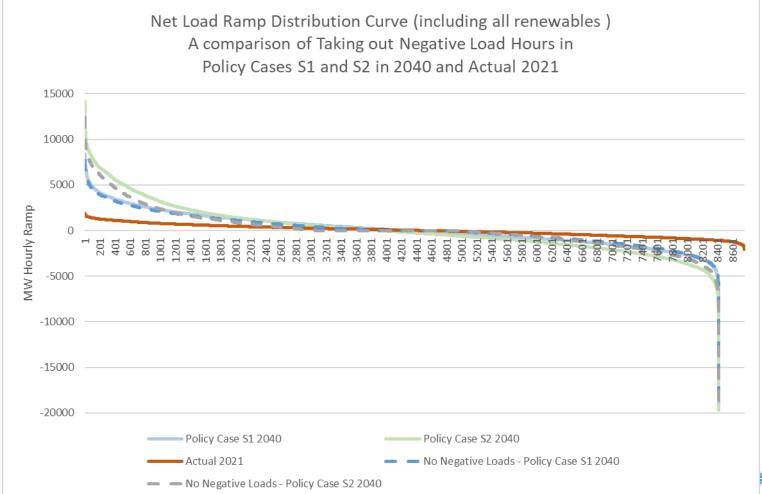
- Existing and planned capacity based on the installed in-service date provided in the 2021 Gold Book. Approximately 30 MW of existing and planned FTM Solar:
 - Facilities that have completed Class Year Facilities Study (2021 Gold Book)
 - Facilities that have completed CRIS Request (2021 Gold Book)
 - Future and Non-Class Year Facilities Reported to NYSERDA (https://data.ny.gov/Energy-Environment/Large-scale-Renewable-Projects-Reported-by-NYSERDA/dprp-55ye)
- Beyond 2023 adjusted the assumed MW to be in line with the System and Resource Outlook Study Policy Cases S1 and S2 grid scale solar resources (see the April 26 ESPWG presentation)
- Using the 2006 Solar Planning Shape for upstate zones and the actual 2019 production data shape for zone K



Phase 1 results without negative net load periods

Hours with negative net load


- The hours with negative net load account for approximately 9% of hours over all of the years of the study however that changes over time from 3% in 2030 to 13% to 25% in 2040
 - The chart shows the percent of negative load hours by hour, year and Policy Case buildout.
 - In 2030 there is almost no difference between the two Policy Cases
 - The 2040 difference between the two Policy Case buildouts is primarily because of the additional PV in Policy Case S2



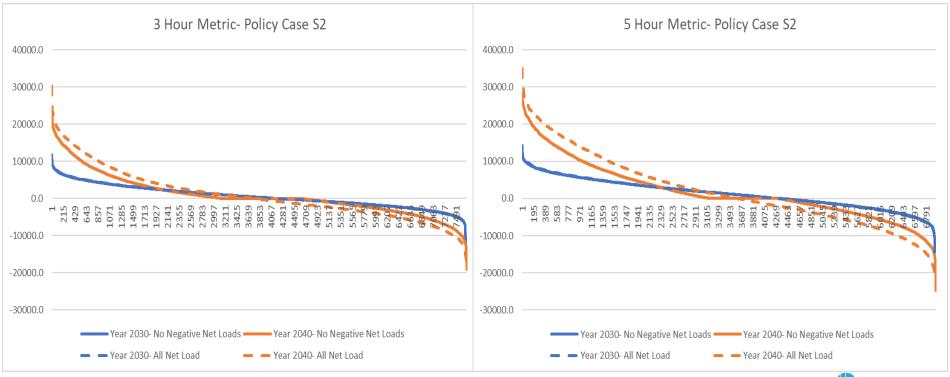
Phase 1 Net Load **Duration Curves-2030** and 2040 (and actual 2021) without negative net load hours

Phase 1 Multi Hour Ramps without negative net load hours

Looking at the total multi hour ramps over the entire year*

Comparing 3 and 5 hour ramps

- The following two slides compare the distributions of the 3 and 5 hour metrics between the original net loads and the net loads without negative loads for 2030 and 2040 and for the Policy Case S1 and S2 buildouts.
 - The Policy Case S1 shows almost no difference between the two net loads
 - The Policy Case S2 shows a little difference in 2040 for the two different net loads

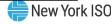


Policy Case S1

Policy Case S2

Ramp up needs with negative net load periods (from prior presentation)

- Focusing on instances when the multi-hour ramp up is greater than 5,000MW and when it is greater than 10,000 MW
 - Ramp up needs are larger in 2040 than 2030
 - Ramp up needs greater under Policy Case S2 than S1 because of the larger amounts of assumed intermittent resources


		No. of		Average number of Ramp	Average	Shoulder %			25 %ile	50 %ile / Median Ramp	75 %ile
Scenario	Year	Instances	Ramp MWs	up hours	ramp MWs	(6 months)	Winter %	Summer %	MWs	MWs	Ramp MWs
Policy Case S1	2030	398	>5000	5.9	7692	48%	28%	24%	6235	7460	8791
Policy Case S1	2040	558	>5000	5.6	10032	49%	26%	25%	6985	9380	12335
Policy Case S2	2030	407	>5000	6.0	7905	49%	28%	23%	6355	7771	9052
Policy Case S2	2040	466	>5000	6.0	17019	50%	28%	21%	10055	17542	22968
Policy Case S1	2030	46	>10000	6.8	11149	59%	37%	4%	10321	10979	11773
Policy Case S1	2040	245	>10000	6.5	13371	45%	32%	23%	11130	12694	15009
Policy Case S2	2030	58	>10000	7.0	11394	59%	29%	12%	10426	10865	11973
Policy Case S2	2040	351	>10000	6.5	20274	50%	25%	25%	15340	20166	24528

Ramp up needs with no negative net loads

- Not a great deal of differences
 - Somewhat shorter ramps and fewer instances which is consistent with the 3 and 5 hour ramps

		No. of		Average number of Ramp	Average	Shoulder %				50 %ile / Median Ramp	75 %ile
Scenario						(6 months)	Winter %		•	MWs	Ramp MWs
Policy Case S1	2030	389	>5000	5.8	7533	47%	29%	25%	6124	7298	8581
Policy Case S1	2040	498	>5000	5.5	9638	44%	28%	28%	6833	9003	11745
Policy Case S2	2030	397	>5000	5.9	7769	48%	28%	24%	6280	7649	8915
Policy Case S2	2040	407	>5000	5.3	14079	45%	31%	24%	8167	13147	18973
Policy Case S1	2030	37	>10000	6.7	10887	54%	41%	5%	10270	10514	11182
Policy Case S1	2040	200	>10000	6.4	13061	35%	38%	28%	10953	12584	14523
Policy Case S2	2030	49	>10000	7.0	11266	55%	31%	14%	10399	10680	11557
Policy Case S2	2040	264	>10000	5.9	17772	37%	30%	33%	13455	17180	21541

The bottom line

- As expected, taking out the negative net load periods does change the results somewhat. It generally decreases the ramp periods
 - For the period of the study, the maximum ramp up and down MWs have reduced by an average of 11% while the average ramp up and down MWs have reduced by 6%.

 The table below shows summary statistics of the 2021 Actuals along with the 2030 and 2040 cases, with and without the negative net loads.

					Average		Average		
			Ramp	Average	Ramp	Average	Ramp		
		Ramp Up	Down	Ramp Up	Down	Ramp Up	Down	Max Ramp	Max Ramp
Year	Scenario	Instances	Instances	Hours	Hours	MWs	MWs	Up MWs	Down MWs
2021	Actual	856	1,147	5.2	3.5	3,171	(1,852)	13,138	(7,115)
2030	Policy Case S1- with negative net loads	1,141	1,403	3.6	3.0	3,853	(2,617)	15,046	(14,528)
	Policy Case S2- with negative net loads	1,132	1,399	3.7	3.0	3,946	(2,671)	16,247	(14,425)
	Policy Case S1- no negative net loads	1,129	1,384	3.6	3.0	3,788	(2,570)	15,046	(14,375)
	Policy Case S2- no negative net loads	1,120	1,381	3.6	3.0	3,883	(2,623)	15,739	(14,425)
2040	Policy Case S1- with negative net loads	1,134	1,395	3.8	3.0	5,779	(3,838)	24,388	(19,000)
	Policy Case S2- with negative net loads	1,080	1,338	3.6	3.4	8,178	(5,706)	36,692	(29,637)
	Policy Case S1- no negative net loads	1,049	1,271	3.6	2.9	5,466	(3,651)	21,367	(19,000)
	Policy Case S2- no negative net loads	917	1,130	3.3	3.0	7,085	(4,794)	30,466	(29,637)

Conclusion

- Taking out the negative net load periods does change the results somewhat. It generally decreases the ramp periods, especially ramp up periods.
- When looking at the ramp metrics overall, the change is generally small and does not change the general conclusions
 - For the Policy Case S1 buildout, when taking out the negative net loads, the maximum ramp up goes down by 9% while the maximum ramp down does not change for both 3 hour and 5 hour ramps
 - For Policy Case S2, the larger solar buildout leads to more negative net load hours and more of a change when excluding negative net loads from the ramps.
 - When taking out the negative net loads, the maximum ramp up decreases by an average of 20% for both the 3 hour and 5 hour ramps while the maximum ramp down decreases by 10% for the 5 hour ramps and is unchanged for the 3 hour ramps.
- We are considering including both cases in the report
 - Results without negative net load periods to provide operational insight
 - Results with negative net load periods to provide insight on the curtailment of renewables and for the additional loads that might consider to coming online in those periods

